
Chapter 2

THEORY OF SIMPLEX
METHOD

2.1 Mathematical Programming Problems
A mathematical programming problem is an optimization problem of finding the values of the un-
known variables x1, x2, · · · , xn that

maximize (or minimize) f(x1, x2, · · · , xn)
subject to gi(x1, x2, · · · , xn)(≤, =,≥)bi, i = 1, 2, · · · ,m

(2.1)

where the bi are real constants and the functions f and gi are real-valued. The function f(x1, x2, · · · , xn)
is called the objective function of the problem (2.1) while the functions gi(x1, x2, · · · , xn) are called
the constraints of (2.1). In vector notations, (2.1) can be written as

max or min f(xT )

subject to gi(xT )(≤, =,≥)bi, i = 1, 2, · · · , m

where xT = (x1, x2, · · · , xn) is the solution vector.
Example 2.1. Consider the following problem.

max f(x, y) = xy

subject to x2 + y2 = 1

A classical method for solving this problem is the Lagrange multiplier method. Let

L(x, y, λ) = xy − λ(x2 + y2 − 1).

Then differentiate L with respect to x, y, λ and set the partial derivative to 0 we get

∂L

∂x
= y − 2λx = 0,

∂L

∂y
= x− 2λy = 0,

∂L

∂λ
= x2 + y2 − 1 = 0.

The third equation is redundant here. The first two equations give

y

2x
= λ =

x

2y

1
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which gives x2 = y2 or x = ±y. We find that the extrema of xy are obtained at x = ±y. Since
x2 + y2 = 1 we then have x = ± 1√

2
and y = ± 1√

2
. It is then easy the verify that the maximum

occurs at x = y = 1√
2

and x = y == 1√
2

giving f(x, y) = 1
2 .
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A linear programming problem (LPP) is a mathematical programming problem having a linear
objective function and linear constraints. Thus the general form of an LP problem is

maxormin z = c1x1 + c2x2 + · · ·+ cnxn

subject to





a11x1 + · · ·+ a1nxn(≤, =, ≥)b1,

...
...

am1x1 + · · ·+ amnxn(≤, =, ≥)bm,

(2.2)

Here the constants aij , bi and cj are assumed to be real. The constants cj are called the cost or price
coefficients of the unknowns xj and the vector (c1, · · · , cn)T is called the cost or price vector.

If in problem (2.2), all the constraints are inequality with sign ≤ and the unknowns xi are
restricted to nonnegative values, then the form is called canonical. Thus the canonical form of an
LP problem can be written as

maxormin z = c1x1 + c2x2 + · · ·+ cnxn

subject to





a11x1 + · · ·+ a1nxn ≤ b1,

...
...

am1x1 + · · ·+ amnxn ≤ bm,

where xi ≥ 0, i = 1, 2, · · · , n.

(2.3)

If all bi ≥ 0, then the form is called a feasible canonical form.
Before the simplex method can be applied to an LPP, we must first convert it into what is

known as the standard form:

max z = c1x1 + · · ·+ cnxn

subject to

{
ai1x1 + · · ·+ ainxn = bi, i = 1, 2, · · · ,m

xj ≥ 0, j = 1, 2, · · · , n .
(2.4)

Here the bi are assumed to be nonnegative. We note that the number of variables may or may not
be the same as before.
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One can always change an LPP problem into the canonical form or into the standard form by
the following procedures.

(i) If the LP as originally formulated calls for the minimization of the functional

z = c1x1 + c2x2 + · · ·+ cnxn,

we can instead substitute the equivalent objective function

maximize z′ = (−c1)x1 + (−c2)x2 + · · · (−cn)xn = −z .

(ii) If any variable xj is free i.e., not restricted to non-negative values, then it can be replaced by

xj = x+
j − x−j ,

where x+
j = max(0, xj) and x−j = max(0,−xj) are now non-negative. We substitute x+

j − x−j
for xj in the constraints and objective function in (2.2). The problem then has (n + 1) non-
negative variables x1, · · · , x+

j , x−j , · · · , xn.

(iii) If bi ≤ 0, we can multiply the i-th constraint by −1.

(iv) An equality of the form
∑n

j=1 aijxj = bi can be replaced by
n∑

j=1

aijxj ≤ bi and
n∑

j=1

(−aij)xj ≤ (−bi).

(v) Finally, any inequality constraint in the original formulation can be converted to equations by
the addition of non-negative variables called the slack and the surplus variables. For example,
the constraint

ai1x1 + · · ·+ aipxp ≤ bi

can be written as
ai1x1 + · · ·+ aipxp + xp+1 = bi

where xp+1 ≥ 0 is a slack variable. Similarly, the constraint

aj1x1 + · · ·+ ajpxp ≥ bj

can be written as
aj1x1 + · · · ajpxp − xp+2 = bj

where xp+2 ≥ 0 is a surplus variable. The new variables would be assigned zero cost coefficients
in the objective function, i.e. cp+i = 0.

In matrix notations, the standard form of an LPP is

Max z = cT x

subject to Ax = b (2.5)
and x ≥ 000 (2.6)

where A is m× n, b is m× 1, x is n× 1 and rank (A) = m.

Definition 2.1. A feasible solution (FS) to an LPP is a vector x which satisfies constraints (2.5)
and (2.6). The set of all feasible solutions is called the feasible region. A feasible solution to an LPP
is said to be an optimal solution if it maximizes the objective function of the LPP. A feasible solution
to an LPP is said to be a basic feasible solution (BFS) if it is a basic solution with respect to the
linear system (2.5). If a basic feasible solution is non-degenerate, then we call it a non-degenerate
basic feasible solution.

We note that the optimal solution may not be unique, but the optimum value of the problem
should be unique. For LPP in feasible canonical form, the zero vector is always a feasible solution.
Hence the feasible region is always non-empty.
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2.2 Basic Feasible Solutions and Extreme Points
In this section, we discuss the relationship between basic feasible solutions to a LPP and extreme
points of the corresponding feasible region. We will show that they are indeed the same. We assume
a LLP is given in its feasible canonical form.

Theorem 2.1. The feasible region to an LPP is convex, closed and bounded from below.

Proof. That the feasible region is convex follows from Lemma 1.1. The closeness follows from the
fact that the set that satisfies the equality or inequalities of the type ≤ and ≥ are closed and that
the intersection of closed sets are closed. Finally, by (2.6), we see that the feasible region is a subset
of Rn

+, where Rn
+ is given in (1.3) and is a set bounded from below. Hence the feasible region itself

must also be bounded from below.

Theorem 2.2. If there is a feasible solution then there is a basic feasible solution.

Proof. Assume that there is a feasible solution x with p positive variables where p ≤ n. Let us
reorder the variables so that the first p variables are positive. Then the feasible solution can be
written as xT = (x1, x2, x3, · · · , xp, 0, · · · , 0), and we have

p∑

j=1

xjaj = b. (2.7)

Let us first consider the case where {aj}p
j=1 is linearly independent. Then we have p ≤ m for m

is the largest number of linearly independent vectors in A. If p = m, x is basic according to the
definition, and in fact it is also non-degenerate. If p < m, then there exist ap+1, · · · ,am such that
the set {a1,a2, · · · ,am} is linearly independent. Since xp+1, xp+2, · · · , xm are all zero, it follows
that

m∑

j=1

xjaj =
p∑

j=1

xjaj = b

and x is a degenerate basic feasible solution.
Suppose that {a1,a2, · · · ,ap} is linearly dependent and without loss of generality, assume that

none of the aj are zero vectors. For if aj is zero, we can set xj to zeros and hence reduce p by 1.
With this assumption, then there exists {αj}p

j=1 not all zero such that

p∑

j=1

αjaj = 000.

Let αr 6= 0, we have

ar =
p∑

j=1
j 6=r

(
− αj

αr

)
aj .

Substitute this into (2.7), we have

p∑
j=1
j 6=r

(
xj − xr

αj

αr

)
aj = b .

Hence we have a new solution for (2.5), namely,

[
x1 − xr

α1

αr
, · · · , xr−1 − xr

αr−1

αr
, 0, xr+1 − xr

αr+1

αr
, · · · , xp − xr

αp

αr
, 0, · · · , 0

]T



2.2. Basic Feasible Solutions and Extreme Points 5

which has no more than p− 1 non-zero variables.
We now claim that, by choosing αr suitably, the new solution above is still a feasible solution.

In order that this is true, we must choose our αr such that

xj − xr
αj

αr
≥ 0, j = 1, 2, · · · , p. (2.8)

For those αj = 0, the inequality obviously holds as xj ≥ 0 for all j = 1, 2, · · · , p. For those αj 6= 0,
the inequality becomes

xj

αj
− xr

αr
≥ 0, for αj > 0, (2.9)

xj

αj
− xr

αr
≤ 0, for αj < 0. (2.10)

If we choose our αr > 0, then (2.10) automatically holds. Moreover if αr is chosen as

xr

αr
= min

j

{
xj

αj
: αj > 0

}
, (2.11)

then (2.9) is also satisfied. Thus by choosing αr as in (2.11), then (2.8) holds and x is a feasible
solution of p− 1 non-zero variables. We note that we can also choose αr < 0 and such that

xr

αr
= max

j

{
xj

αj
: αj < 0

}
, (2.12)

then (2.8) is also satisfied, though clearly the two αr
′s in general will not give the same new solution

with (p− 1) non-zero entries.
Assume that a suitable αr has been chosen and the new feasible solution is given by

x̂ = [x̂1, x̂2, · · · , x̂r−1, 0, x̂r+1, · · · , x̂p, 0, 0, · · · , 0]T

which has no more than p − 1 non-zero variables. We can now check whether the corresponding
column vectors of A are linearly independent or not. If it is, then we have a basic feasible solution.
If it is not, we can repeat the above process to reduce the number of non-zero variables to p − 2.
Since p is finite, the process must stop after at most p − 1 operations, at which we only have one
nonzero variable. The corresponding column of A is clearly linearly independent. (If that column
is a zero column, then the corresponding α can be arbitrary chosen, and hence it can always be
eliminated first). The x obtained then is a basic feasible solution.

Example 2.2. Consider the linear system

[
2 1 4
3 1 5

] 


x1

x2

x3


 =

[
11
14

]

where x =




2
3
1


 is a feasible solution. Since a1 + 2a2 − a3 = 0, we have

α1 = 1 , α2 = 2 , α3 = −1.

By (2.11),
x2

α2
=

3
2

= min
j=1,2,3

{
xj

αj
: αj > 0

}
.
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Hence r = 2 and

x̂1 = x1 − x2
α1

α2
= 2− 3 · 1

2
=

1
2
,

x̂2 = 0,

x̂3 = x3 − x2
α3

α2
= 1− 3 · −1

2
=

5
2
,

Thus the new feasible solution is x1
T = ( 1

2 , 0, 5
2 ). Since

a1 =
[
2
3

]
, a3 =

[
4
5

]

are linearly independent, the solution is also basic.
Similarly, if we use (2.12), we get

x3

α3
=

1
−1

= max
j=1,2,3

{
xj

αj
: αj < 0

}
.

Hence r = 3 and we have

x̂1 = x1 − x3
α1

α3
= 2− (−1)1 = 3,

x̂2 = x2 − x3
α2

α3
= 3− (−1)2 = 5.

Thus x2
T = (3, 5, 0), which is also a basic feasible solution.

Suppose that we eliminate a1 instead, then we have

x̂1 = 0

x̂2 = x1
x2

α1
= 3− 2 · 2

1
= −1

x̂3 = x3 − x1
α3

α1
= 1− 2 · (−1)

1
= 3

Thus the new solution is x1
T = (0,−1, 3). We note that it is a basic solution but is no longer

feasible.

Theorem 2.3. The basic feasible solutions of an LPP are extreme points of the corresponding
feasible region.

Proof. Suppose that x is a basic feasible solution and without loss of generality, assume that x has
the form

x =
[
xB

000

]

where
xB = B−1b

is an m× 1 vector. Suppose on the contrary that there exist two feasible solutions x1,x2, different
from x, such that

x = λx1 + (1− λ)x2

for some λ ∈ (0, 1). We write

x1 =
[
u1

v1

]
, x2 =

[
u2

v2

]
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where u1, u2 are m-vectors and v1, v2 are (n−m)-vectors. Then we have

000 = λv1 + (1− λ)v2.

As x1,x2 are feasible, v1,v2 ≥ 000. Since λ, (1− λ) > 0, we have v1 = 000 and v2 = 000. Thus

b = Ax1 = [B,R]
[
u1

v1

]
= Bu1 ,

and similarly,
b = Ax2 = Bu2 .

Thus we have
Bu1 = Bu2 = b = BxB .

Since B is non-singular, this implies that u1 = u2 = xB . Hence

x =
[
xB

000

]
=

[
u1

000

]
= x1 =

[
u2

000

]
= x2,

and that is a contradiction. Hence x must be an extreme point of the feasible region.

The next theorem is the converse of Theorem 2.3.

Theorem 2.4. The extreme points of a feasible region are basic feasible solutions of the correspond-
ing LPP.

Proof. Suppose x0 = (x1, · · · , xn)T is an extreme point of the feasible region. Assume that there
are r components of x0 which are non-zero. Without loss of generality, let xi > 0 for i = 1, 2, · · · , r
and xi = 0 for i = r + 1, r + 2, · · · , n. Then we have

r∑

i=1

xiai = b.

We claim that {a1, · · · ,ar} is linearly independent. Suppose on contrary that there exist αi, i =
1, 2, · · · , r, not all zero, such that

r∑

i=1

αiai = 000. (2.13)

Let ε be such that
0 < ε < min

αi 6=0

xi

|αi| ,

then
xi ± ε · αi > 0, ∀i = 1, 2, · · · , r. (2.14)

Put x1 = x0 + ε ·ααα and x2 = x0 − ε ·ααα where αααT = (α1, α2, · · · , αr, 0, · · · , 0). We claim that x1,x2

are feasible solutions. Clearly by (2.14), x1 ≥ 000 and x2 ≥ 000. Moreover by (2.13),

Ax1 = Ax0 + εAααα = Ax0 + 000 = b.

Therefore, x1 is a feasible solution. Similarly,

Ax2 = Ax0 − εAααα = Ax0 + 000 = b,

and x2 is also a feasible solution. Since clearly x0 =
1
2
x1 +

1
2
x2, x0 is not an extreme point, hence

we have a contradiction. Therefore the set {a1, · · · ,ar} must be linearly independent, and that x0

is a basic feasible solution.
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The significance of the extreme points of feasible regions is given by the following theorem.

Theorem 2.5. The optimal solution to an LPP occurs at an extreme point of the feasible region.

Proof. We first claim that no point on the hyperplane that corresponds to the optimal value of the
objective function can be an interior point of the feasible region. Suppose on contrary that z = cT x
is an optimal hyperplane and that the optimal value is attained by a point x0 in the interior of the
feasible region. Then there exists an ε > 0 such that the sphere

X = {x : |x− x0| < ε}
is in the feasible region. Then the point

x1 = x0 +
ε

2
c
|c| ∈ X

is a feasible solution. But

cT x1 = cT x0 + cT ε

2
c
|c| = z +

ε

2
|c| > z,

a contradiction to the optimality of z. Thus x0 has to be a boundary point.
Now since cT x ≤ z for all feasible solutions x, we see that the optimal hyperplane is a support-

ing hyperplane of the feasible region at the point x0. By Theorem 1, the feasible region is bounded
from below. Therefore by Theorem 1.5, the supporting hyperplane z = cT x contains at least one
extreme point of the feasible region. Clearly that extreme point must also be an optimal solution to
the LPP.

Summarizing what we have proved so far, we see that the optimal value of an LPP can be
obtained at the basic feasible solutions, or equivalently, at the extreme points. Simplex method is a
method that systematically searches through the basic feasible solutions for the optimal one.

Example 2.3. Consider the constraint set in R2 defined by

x1 +
8
3
x2 ≤ 4 (2.15)

x1 + x2 ≤ 2 (2.16)

2x1 ≤ 3 (2.17)

x1, x2 ≥ 0 (2.18)

Adding slack variables x3, x4 and x5 to convert it into standard form gives,

x1 +
8
3
x2 + x3 = 4 (2.19)

x1 + x2 + x4 = 2 (2.20)

2x1 + x5 = 3 (2.21)

x1, x2, x3, x4, x5 ≥ 0 (2.22)

A basic solution is obtained by setting any two variables of x1, x2, x3, x4, x5 to zero and solving for
the remaining three. For example, let us set x1 = 0 and x3 = 0 and solve for x2, x4 and x5 in





8
3x2 = 4
x2 + x4 = 2

x5 = 3
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Figure 2.1. There are 5 extreme points by inspection {a, b, c, d, e}.

We get the point [0, 3
2 , 0, 1

2 , 3]. From Figure 2.3, we see that this point corresponds to the extreme
point a of the convex polyhedron K defined by (2.19), (2.20), (2.21), (2.22). The equations x1 = 0
and x3 = 0 are called the binding equations of the extreme point a.

We note that not all basic solutions are feasible. In fact there is a maximum total of
(
5
3

)
=(

5
2

)
= 10 basic solutions and here we have only five extreme points. The extreme points of the region

K and their corresponding binding equations are given in the following table.

extreme point a b c d e

set to zero
x1 x3 x4 x2 x1

x3 x4 x5 x5 x2

If we set x3 and x5 to zero, the basic solution we get is [
3
2
,
15
16

, 0,− 7
16

, 0]. Hence it is not a
basic feasible solution and therefore does not correspond to any one of the extreme point in K. In
fact, it is given by the point f in the above figure.

2.3 Improving a Basic Feasible Solution
Let the LPP be

max z = cT x

subject to

{
Ax = b

x ≥ 0 .

Here we assume that b ≥ 000 and rank(A) = m. Let the columns of A be given by aj , i.e. A =
[a1,a2, · · · ,an]. Let B be an m ×m non-singular matrix whose columns are linearly independent
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columns of A and we denote B by [b1,b2, · · · ,bm]. We learn from §1.5 that for any choice of basic
matrix B, there corresponds a basic solution to Ax = b. The basic solution is given by the m-vector
xB = [xB1 , · · · , xBm ] where

xB = B−1b.

Corresponding to any such xB , we define an m-vector cB , called the reduced cost vector, containing
the prices of the basic variables, i.e.

cB =




cB1

...
cBm


 .

Note that for any BFS xB , the value of the objective function is given by

z = cT
BxB .

To improve z, we must be able to locate other BFS easily, or equivalently, we must be able to
replace a basic matrix B by others easily. In order to do this, we need to express the columns of A
in terms of the columns of B. Since A is an m × n matrix and rank(A) = m, the column space of
A is m dimensional. Thus the columns of B form a basis for the column space of A. Let

aj =
m∑

i=1

yijbi, for all j = 1, 2, · · · , n. (2.23)

Put

yj =




y1j

y2j

...
ymj


 , for all j = 1, 2, · · · , n,

then we have aj = Byj . Hence

yj = B−1aj , for all j = 1, 2, · · · , n. (2.24)

The matrix B can be considered as the change of coordinate matrix from {y1, · · · ,yn} to {a1, · · · ,an}.
We remark that if aj appears as bi, i.e., xj is a basic variable and xj = xBi , then yj = ei, the i-th
unit vector.

Given a BFS xB = B−1b corresponding to the basic matrix B, we would like to improve the
value of the objective function which is currently given by z = cT

BxB . For simplicity, we will confine
ourselves to those BFS in which only one column of B is changed. We claim that if yrj 6= 0 for some
r, then br can be replaced by aj and the new set of vectors still form a basis. We can then form the
corresponding new basic solution. In fact, we note that if yrj 6= 0, then by (2.23)

br =
1

yrj
aj −

m∑
i=1
i6=r

yij

yrj
bi.

Using this, we can replace br in

BxB =
m∑

i=1

xBibi = b,

by aj and we get
m∑

i=1
i 6=r

(
xBi − xBr

yij

yrj

)
bi +

xBr

yrj
aj = b.
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Let

x̂Bi
=





xBi − xBr

yij

yrj
, i = 1, 2, · · · ,m

xBr

yrj
, i = j,

we see that the vector

x̂B = [x̂B1 , · · · , x̂Br−1 , 0, x̂Br+1 , · · · , x̂Bm
, 0, · · · , 0, x̂Bj

, 0, · · · , 0]T

is a basic solution with x̂Br
= 0. Thus the old basic variable xr is replaced by the new basic variable

xj .
Now we have to make sure that the new basic solution is a basic feasible solution with a larger

objective value. We will see that we can assure the feasibility of the new solution by choosing a
suitable br to be replaced, and we can improve the objective value by choosing a suitable aj to be
inserted in B.

2.3.1 Feasibility: restriction on br.

We require that x̂Bi ≥ 0 for all i = 1, · · · , n. Since xBi = 0 for all m < i ≤ n, we only need





xBi − xBr

yij

yrj
≥ 0 i = 1, 2, · · · ,m

xBr

yrj
≥ 0

Let r be chosen such that

xBr

yrj
= min

i=1,2,··· ,m

{
xBi

yij
: yij > 0

}
. (2.25)

Then it is easy to check that all x̂Bi ≥ 0 for all i. Thus the corresponding column br is the column
to be replaced from B. We call br the leaving column.

2.3.2 Optimality: restriction on aj.

Originally, the objective value is given by

z = cT
BxB =

m∑

i=1

cBixBi .

After the removal and insertion of columns of B, the new objective value becomes

ẑ = ĉT
Bx̂B =

m∑

i=1

ĉBi x̂Bi
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where ĉBi
= cBi

for all i = 1, 2, · · · , m and i 6= r, and ĉBr
= cj . Thus we have

ẑ =
m∑

i=1
i 6=r

cBi
x̂Bi

+ ĉBr
x̂Br

=
m∑

i=1
i 6=r

cBi

(
xBi

− xBr

yij

yrj

)
+ cj

xBr

yrj

=
m∑

i=1

cBi
xBi

− xBr

yrj

m∑

i=1

cBi
yij + cj

xBr

yrj

= z − xBr

yrj
cT

Byj + cj
xBr

yrj

= z +
xBr

yrj
(cj − zj)

where
zj = cT

Byj = cT
BB−1aj . (2.26)

Obviously, by our choice, if cj > zj , then ẑ ≥ z. Hence we choose our aj such that cj − zj > 0 and
yij > 0 for some i. For if yij ≤ 0 for all i, then the new solution will not be feasible. The aj that
we have chosen is called the entering column. We note that if xB is non-degenerate, then xBr > 0,
and hence ẑ > z.

Let us summarize the process of improving a basic feasible solution in the following theorem.

Theorem 2.6. Let xB be a BFS to an LPP with corresponding basic matrix B and objective value
z. If (i) there exists a column aj in A but not in B such that the condition cj − zj > 0 holds and
if (ii) at least one yij > 0, then it is possible to obtain a new BFS by replacing one column in B by
aj and the new value of the objective function ẑ is larger than or equal to z. Furthermore, if xB is
non-degenerate, then we have ẑ > z.

The numbers cj − zj are called the reduced cost coefficients with respect to the matrix B. We
remark that if aj already appears as bi, i.e. xj is a basic variable and xj = xBi , then cj − zj = 0.
In fact

zj = cT
BB−1aj = cT

Byj = cT
Bei = cBi = cj .

By Theorem 2.6, it is natural to think that when all zj − cj ≥ 0, we have reached the optimal
solution.

Theorem 2.7. Let xB be a BFS to an LPP with corresponding objective value z0 = cT
BxB. If

zj − cj ≥ 0 for every column aj in A, then xB is optimal.

Proof. We first note that given any feasible solution x, then by the assumption that zj − cj ≥ 0 for
all j = 1, 2, · · · , n and by (2.26), we have

z =
n∑

j=1

cjxj ≤
n∑

j=1

zjxj =
n∑

j=1

(cT
Byj)xj =

n∑

j=1

( m∑

i=1

cBiyij

)
xj =

m∑

i=1

( n∑

j=1

yijxj

)
cBi .

Thus

z ≤
m∑

i=1

( n∑

j=1

yijxj

)
cBi . (2.27)

Now we claim that

x̃i ≡
n∑

j=1

yijxj = xBi , i = 1, 2, · · · ,m.



2.3. Improving a Basic Feasible Solution 13

Since x is a feasible solution, Ax = b. Thus by (2.24),

b =
n∑

j=1

xjaj =
n∑

j=1

xj(Byj) =
n∑

j=1

( m∑

i=1

yijbi

)
xj =

m∑

i=1

( n∑

j=1

yijxj

)
bi =

m∑

i=1

x̃ibi = Bx̃.

Since B is non-singular and we already have BxB = b, it follows that x̃ = xB . Thus by (2.27),

z ≤
m∑

i=1

xBi
cBi

= z0

for all x in the feasible region.

Example 2.4. Let us consider the LPP with

A =
[
1 2 3 4
1 0 0 1

]
, cT = [2, 5, 6, 8] and b =

[
5
2

]
.

Let us choose our starting B as

B = [a1,a4] = [b1,b2] =
[
1 4
1 1

]
.

Then it is easily checked that the corresponding basic solution is xB = [1, 1]T , which is clearly
feasible with objective value

z = cT
BxB = [2, 8]

[
1
1

]
= 10.

Since

B−1 =
1
3

[−1 4
1 −1

]
,

by (2.24), the yij are given by

y1 =
[
1
0

]
y2 =

[− 2
3

2
3

]
y3 =

[−1
1

]
y4 =

[
0
1

]
.

Hence

z2 = [2, 8]
[− 2

3
2
3

]
= 4,

and

z3 = [2, 8]
[−1

1

]
= 6.

Since z2 − c2 = −1 and z3 − c3 = 0, we see that a2 is the entering column. As remarked above,

z1 − c1 = z4 − c4 = 0,

because x1 and x4 are basic variables. Looking at the column entries of y2, we find that y22 is the
only positive entry. Hence b2 = a4 is the leaving column. Thus

B̂ = [a1,a2] =
[
1 2
1 0

]
,

and the corresponding basic solution is found to be x̂B = [2,
3
2
]T , which is clearly feasible as expected.

The new objective value is given by

ẑ = [2, 5]
[
2
3
2

]
= 11.5 > z.
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Since

B̂−1 =
1
2

[
0 2
1 −1

]
,

by (2.24), the ŷij are given by

ŷ1 =
[
1
0

]
ŷ2 =

[
0
1

]
ŷ3 =

[
0
3
2

]
ŷ4 =

[
1
3
2

]
.

Hence

z3 − c3 = [2, 5]
[
0
3
2

]
− 6 = 1.5,

and

z4 − c4 = [2, 5]
[
1
3
2

]
− 8 = 1.5.

Since all zj − cj ≥ 0, 1 ≤ j ≤ 4, we see that the point [2, 3
2 ] is an optimal solution.

The last example illustrates how one can find the optimal solution by searching through the
basic feasible solutions. That is exactly what simplex method does. However, the simplex method
uses tableaus to minimize the book-keeping work that we encountered in the last example.


