
Chapter 5

DUALITY

5.1 The Dual Problems
Every linear programming problem has associated with it another linear programming problem and
that the two problems have such a close relationship that whenever one problem is solved, the other
is solved as well. The original LPP is called the primal problem and the associated LPP is called
the dual problem. Together they are called a “dual pair” (primal + dual) in the sense that the dual
of the dual will again be the primal.
Example 5.1. (The Diet Problem) How can a dietician design the most economical diet that satisfies
the basic daily nutritional requirements for a good health? For simplicity, we assume that there are
only two foods F1 and F2 and the daily nutrition required are N1, N2 and N3. The unit cost of the
foods and their nutrition values together with the daily requirement of each nutrition are given in
the following table.

F1 F2 Daily Requirement

Cost 120 180 –

N1 1 1 10

N2 2 4 24

N3 3 6 32

Let xj , j = 1, 2 be the number of units of Fj that one should eat in order to minimize the cost and
yet fulfill the daily nutrition requirement. Thus the problem is to select the xj such that

min x0 = 120x1 + 180x2

subject to the nutritional constraints: 



x1 + x2 ≥ 10
2x1 + 4x2 ≥ 24
3x1 + 6x2 ≥ 32

and the non-negativity constraints: xj ≥ 0, j = 1, 2. In matrix form, we have

min x0 = cT x

subject to

{
Ax ≥ b

x ≥ 0

1
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where

c =
[
120
180

]
, x =

[
x1

x2

]
, b =




10
24
32




and

A =




1 1
2 4
3 6


 .

Now let us look at the same problem from a pharmaceutical company’s point of view. How
can a pharmaceutical company determine the price for each unit of nutrient pill so as to maximize
revenue, if a synthetic diet made up of nutrient pills of various pure nutrients is adopted? Thus we
have three types of nutrient pills P1, P2 and P3. We assume that each unit of Pi contains one unit of
the Ni. Let ui be the unit price of Pi, the problem is to maximize the total revenue u0 from selling
such a synthetic diet, i.e.

max u0 = 10u1 + 24u2 + 32u3

subject to the constraints that the cost of a unit of synthetic food j made up of Pi is no greater
than the unit market price of Fj :





u1 + 2u2 + 3u3 ≤ 120
u1 + 4u2 + 6u3 ≤ 180

u1, u2, u3 ≥ 0

In matrix form, the problem is:

max u0 = bT u

subject to

{
AT u ≤ c

u ≥ 0

We said the two problems form a dual pair of linear programming problem, and we will see that the
solution to one should lead to the solution of the other.

Definition 5.1. Let x and c be column n-vectors, b and u be column m-vectors and A be an
m-by-n matrix. The primal and the dual problems can be defined as follows:

Primal Dual

max cT x min bT u

subject to Ax ≤ b subject to AT u ≥ c

x ≥ 0 u ≥ 0

Calling one primal and the other one dual is completely arbitrary for we have the following
theorem.

Theorem 5.1. The dual of the dual is the primal.

Proof. Transforming the dual into canonical form, we have

max u′0 = −bT u

subject to

{
−AT u ≤ −c

u ≥ 0
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Taking the dual of this problem, we have

min x′0 = −cT x

subject to

{
−Ax ≥ −b

x ≥ 0

which is the same as the primal problem.

To obtain the dual of an LP problem in standard form:

max x0 = cT x

subject to

{
Ax = b

x ≥ 0

we can first change it into canonical form:

max x0 = cT x

subject to





Ax ≤ b

−Ax ≤ −b

x ≥ 0

Then its dual is given by

min u0 = bT u1 − bT u2

subject to

{
AT u1 −AT u2 ≥ c

u1,u2 ≥ 0

Letting u = u1 − u2, we finally have

min u0 = bT u

subject to

{
AT u ≥ c

u free

The following is a general rule of the relationship between a dual pair.

max
n∑

j=1

cjxj min
m∑

i=1

uibi

subject to
n∑

j=1

aijxj ≤ bi (i = 1, 2, · · · , k) subject to ui ≥ 0 (i = 1, 2, · · · , k)

n∑
j=1

aijxj = bi (i = k + 1, · · · ,m) ui free (i = k + 1, · · · ,m)

xj ≥ 0 (j = 1, 2, · · · , `)
m∑

i=1

ujaij ≥ cj (j = 1, 2, · · · , `)

xj free (j = ` + 1, · · · , n)
m∑

i=1

uiaij = cj (j = ` + 1, · · · , n)

We observe from the above the following correspondence:
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Primal Dual

Max Program Min Program

cj : n obj. ftn. coeff. n r.h.s.

bi: m r.h.s. m obj. ftn. coeff.

ui: k (≤) constraints k non-neg. variables

ui: m− k (=)constraints m− k free variables

xj : ` non-neg. variables ` (≥) constraints

xj : n− ` free variable n− ` (=)constraints

Example 5.2. Let the original (primal) problem be given by

max x1 + 4x2 + 3x3

subject to





2x1 + 2x2 + x3 ≤ 4
x1 + 2x2 + 2x3 ≤ 6
x1, x2, x3 ≥ 0

Before transforming it to the dual problem, we first have to standardize the primal problem.

max x1 + 4x2 + 3x3 + 0x4 + 0x5

subject to





2x1 + 2x2 + x3 + x4 = 4
x1 + 2x2 + 2x3+ + x5 = 6
x1, x2, x3, x4, x5 ≥ 0

The dual of a standardize primal is easily obtained by transposing the equations. For pri-
mals that are maximization problems, the duals are minimization problems with ≥ signs. All dual
variables are assumed to be unrestricted first.

min 4u1 + 6u2

subject to





2u1 + u2 ≥ 1
2u1 + 2u2 ≥ 4
u1 + 2u2 ≥ 3
u1 ≥ 0

u2 ≥ 0
u1, u2 free

After simplification, we get our final dual problem.

min 4u1 + 6u2

subject to





2u1 + u2 ≥ 1
2u1 + 2u2 ≥ 4
u1 + 2u2 ≥ 3

u1, u2 ≥ 0
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Example 5.3. Let us consider a primal given by

min 5x1 + 6x2

subject to





x1 + 2x2 = 5
−x1 + 5x2 ≥ 3
4x1 + 7x2 ≤ 8
x1 free, x2 ≥ 0

The standardized primal is given by

min 5x′1 − 5x′′1 + 6x2 + 0x3 + 0x4

subject to





x′1 − x′′1 + 2x2 = 5
−x′1 + x′′1 + 5x2 − x3 = 3
4x′1 − 4x′′1 + 7x2 + x4 = 8
x′1, x′′1 , x2, x3, x4 ≥ 0

Since the primal is a minimization problem, the dual problem will be a maximization problem with
≤ signs. The dual variables are assumed to be free first.

max 5u1 + 3u2 + 8u3

subject to





u1 − u2 + 4u3 ≤ 5
−u1 + u2 − 4u3 ≤ −5
2u1 + 5u2 + 7u3 ≤ 6

− u2 ≤ 0
u3 ≤ 0

u1, u2, u3 free

The first two inequality constraints combine together to give an equality constraint.

max 5u1 + 3u2 + 8u3

subject to





u1 − u2 + 4u3 = 5
2u1 + 5u2 + 7u3 ≤ 6

u2 ≥ 0
u3 ≤ 0

u1, u2, u3 free

By replacing the free variable u1 by u′1 − u′′1 and the negative variable u3 by −u3, we finally arrive
at

max 5u′1 − 5u′′1 + 3u2 − 8u3

subject to





u′1 − u′′1− u2 − 4u3 = 5
2u′1 − 2u′′1 + 5u2 − 7u3 ≤ 6
u′1, u′′1 , u2, u3 ≥ 0

which is the dual problem of the original primal problem.
Example 5.4. (Transportation Problem) Suppose that there are m sources that can provide materials
to n destinations that require the materials. The following is called the costs and requirements table
for the transportation problem.
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Destination Supply

Origin

c11 c12 · · · c1n s1

c21 c22 · · · c2n s2

...
...

...
...

...

cm1 cm2 · · · cmn sm

Demand d1 d2 · · · dn

where cij is the unit transportation cost from origin i to destination j, si is the supply available
from origin i and dj is the demand required for destination j. We assume that total supply equals
to total demand, i.e.

m∑

i=1

si =
n∑

j=1

dj .

The problem is to decide the amount xij to be shipped from i to j so as to minimize the total
transportation cost while meeting all demands. That is

min
m∑

i=1

n∑

j=1

cijxij

subject to





∑n
j=1 xij = si (i = 1, 2, · · · ,m)∑m
i=1 xij = dj (j = 1, 2, · · · , n)

xij ≥ 0 (i = 1, 2, · · · ,m ; j = 1, 2, · · · ,m)

The dual is then given by:

max
m∑

i=1

siui +
n∑

j=1

djvj

subject to

{
ui + vj ≤ cij (i = 1, 2, · · · , m ; j = 1, 2, · · · , n)
ui , vj free

5.2 Duality Theorems
We first give the relationship between the objective values of the primal and of the dual.

Theorem 5.2 (Weak Duality Theorem). If x is a feasible solution (not necessarily basic) to the
primal and u is a feasible solution (not necessarily basic) to the dual, then

cT x ≤ bT u .

Proof. Since x is a feasible solution to the primal P , we have Ax ≤ b. As u ≥ 0, we have

uT Ax ≤ uT b = bT u. (5.1)

Similarly, since AT u ≥ c and x ≥ 0, we have

xT AT u ≥ xT c.

Taking the transpose and combining with (5.1), we get cT x ≤ bT u.
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As an immediate corollary, we have

Theorem 5.3. If x0 and u0 are feasible solutions to the primal and the dual respectively and if

cT x0 = bT u0,

then x0 and u0 are optimal solutions to the primal and the dual respectively.

Proof. For all feasible solutions x to the primal, by Theorem 5.2, we have

cT x ≤ bT u0 = cT x0.

Thus x0 is an optimal solution to primal. Similarly, if u is any feasible solution to the dual, then

bT u ≥ cT x0 = bT u0

Thus u0 is an optimal solution to the dual.

The converse of this theorem is the strong duality theorem.

Theorem 5.4 (The Strong Duality Theorem). A feasible solution x0 to the primal is optimal
if and only if there exists a feasible solution u0 to the dual such that

cT x0 = bT u0 . (5.2)

In particular, u0 is an optimal solution to the dual.

Proof. The “if” part is Theorem 5.3. Let us now prove the “only if” part. Let the primal be

max z = cT x

subject to

{
Ax ≤ b

x ≥ 0

Standardizing it, we have

max z = cT x + cT
s xs

subject to

{
Ax + xs = b

x, xs ≥ 0 ,

where xs are all slack variables and cs = 0. Suppose that x0 is an optimal solution to the problem
with basis matrix B. Then

zj ≥ cj , j = 1, 2, · · · , n, n + 1, · · · , n + s .

Since for 1 ≤ j ≤ n, zj = cT
Byj = cT

B(B−1aj). We have, in vector form,

AT (B−1)T cB ≥ c .

This shows that u0 ≡ (B−1)T cB is a solution to AT u ≥ c. It remains to show that u0 ≥ 0 and
satisfies (5.2).

We first prove that u0 ≥ 0. Since

zn+j ≥ cn+j , j = 1, 2, · · · , s,

we have
aT

n+j(B
−1)T cB ≥ cn+j , j = 1, 2, · · · , s.
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Since xn+j are slack variables, the corresponding columns in A are just the jth unit vector ej and
the corresponding cost coefficients cn+j = 0. Thus

eT
j (B−1)T cB ≥ cn+j = 0, j = 1, 2, · · · , s.

Hence u0 = (B−1)T cB ≥ 0. Finally, since

bT u0 = bT (B−1)T cB = cT
BB−1b = cT x0,

we see that u0 satisfies (5.2) and by Theorem 5.3, it is an optimal solution to the dual problem.

This theorem also give us an explicit form of the optimal solution to the dual problem

Theorem 5.5. If B is the basis matrix for the primal corresponding to an optimal solution and
cB contains the prices of the variables in the basis, then an optimal solution to the dual is given by
(B−1)T cB, i.e., the entries in the x0 row under the columns corresponding to the slack variables give
the values of the dual structural variables. Moreover, the entries in the x0 row under the columns
for the structural variables will give the optimal values of the dual surplus variables.

Proof. We only have to prove that uB ≡ (B−1)T cB is given by the entries in the x0 row under the
columns corresponding to the slack variables. In fact, for the slack variables, we have

zn+j − cn+j = zn+j = eT
j (B−1)T cB = uBj .

Next we prove that the entries in the x0 row under the columns for the structural variables give the
optimal values of the dual surplus variables. Since

zj = cT
Byj = cT

B(B−1aj) = aT
j B−T cB = aT

j uB , j = 1, · · ·n,

and AT uB − uBs = c where uBs is the vector of dual surplus variables, we have

z− c = AT uB − c = uBs .

Example 5.5. Let the primal problem be

max x0 = 4x1 + 3x2

subject to








1 0
0 1
1 1
3 1
0 −1




[
x1

x2

]
≤




6
8
7
15
1




x1, x2 ≥ 0.

Standardizing the problem, we have




1 0 1 0 0 0 0
0 1 0 1 0 0 0
1 1 0 0 1 0 0
3 1 0 0 0 1 0
0 −1 0 0 0 0 1







x1

x2

x3

x4

x5

x6

x7




=




6
8
7
15
1




The optimal tableau is given by
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x1 x2 x3 x4 x5 x6 x7 b

x3 0 0 1 0 1
2 − 1

2 0 2

x2 0 1 0 0 3
2 − 1

2 0 3

x4 0 0 0 1 3
2

1
2 0 5

x1 1 0 0 0 − 1
2

1
2 0 4

x7 0 0 0 0 1
2

1
2 1 4

x0 0 0 0 0 5
2

1
2 0 25

Thus the optimal solution is [x1, x2] = [4, 3] with [x3, x4, x5, x6, x7] = [2, 5, 0, 0, 4]. From the x0 row,
we see that the optimal solution to the dual is given by

[u1, u2, u3, u4, u5, u6, u7] =
[
0, 0,

5
2
,
1
2
, 0, 0, 0

]
.

Let us verify this by considering the dual. The dual of the primal is given by

min u0 = 6u1 + 8u2 + 7u3 + 15u4 + u5

subject to





[
1 0 1 3 0
0 1 1 1 −1

]



u1

u2

u3

u4

u5



≥

[
4
3

]

ui ≥ 0, i = 1, 2, 3, 4, 5

Changing the minimization problem to a maximization problem and using simplex method (or the
dual simplex method to be introduced in §4), we obtain the optimal tableau for the dual:

u1 u2 u3 u4 u5 u6 u7 c

u4
1
6 − 1

2 0 1 1
2 − 1

2
1
2

1
2

u3 − 1
2

3
2 1 0 − 3

2
1
2 − 3

2
5
2

u0 2 5 0 0 4 4 3 −25

Thus the optimal solution for the dual is [u1, u2, u3, u4, u5] =
[
0, 0, 5

2 , 1
2 , 0

]
with optimal surplus

variables [u6, u7] = [0, 0]. Notice that the optimal solution to the primal is given by the reduced cost
coefficients for u4 and u5, i.e. [x1, x2] = [4, 3] and the optimal values of the primal slack variables
are given by [x3, x4, x5, x6, x7] = [2, 5, 0, 0, 4].

5.3 The Existence Theorem and The Complementary Slackness
Theorem 5.6 (Existence Theorem). (i) An LPP has a finite optimal solution if and only if

both it and its dual have feasible solutions.
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(ii) If the primal has an unbounded maximum, then the dual has no feasible solution.

(iii) If the dual has no feasible solution but the primal has, then the primal has an unbounded
maximum.

Proof. (i) This follows by Theorem 5.4.
(ii) Proof by contradiction using Theorem 5.2.
(iii) This follows from Theorem 5.4.

We summarize the results in the following table.

Primal Primal is
is feasible not feasible

Dual is both optimal Dual has
feasible solutions exist unbounded solutions

Dual is Primal has possible
not feasible unbounded solutions

Theorem 5.7 (Complementary Slackness). Given any pair of optimal solutions to an LP
problem and its dual, then

(i) for each i, i = 1, 2, · · · ,m, the product of the ith primal slack variable and ith dual variable is
zero, and

(ii) for each j, j = 1, 2, · · · , n, the product of the jth primal variable and jth surplus dual variable
is zero.

Proof. Let the primal problem be

max z = cT x

subject to

{
Ax ≤ b

x ≥ 0

Standardizing it, we have

max z = cT x

subject to

{
Ax + xs = b

x, xs ≥ 0 ,
(5.3)

where xs are the slack variables. Standardizing the dual, we have

max u0 = bT u

subject to

{
AT u− us = c

u,us ≥ 0
(5.4)

where us are the surplus variables. Given any feasible primal solution [x,xs] and any column
m-vectors u, (5.3) implies that

uT Ax + uT xs = uT b = bT u. (5.5)
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Given any feasible dual solution [u,us] and any column n-vector x, (5.4) implies that

xT AT u− xT us = xT c = cT x, (5.6)

Since the cost coefficients of all slack and surplus variables are zero, we see that if [x0,x0s)] and
[u0,u0s)] are optimal solutions to the primal and the dual problems, then

cT x0 = bT u0.

Hence by (5.5) and (5.6), we have
uT

0 x0s + xT
0 u0s = 0.

Using the fact that u0, x0s, x0, u0s ≥ 0, we finally have uT
0 x0s = 0 = xT

0 u0s.

We remark that the converse of Theorem 5.7 is also true.

Theorem 5.8. Let [x0,x0s] be feasible solution to primal and [u0,u0s] be feasible solution to dual.
Suppose that

(i) for each i, i = 1, 2, · · · ,m, the product of the ith primal slack variable and ith dual variable is
zero, and

(ii) for each j, j = 1, 2, · · · , n, the product of the jth primal variable and jth surplus dual variable
is zero.

Then [x0, x0s] and [bou0,u0s] are optimal solutions to the primal and the dual respectively.

Proof. By assumption, uT
0 x0s + xT

0 u0s = 0. Hence

uT
0 x0s = −xT

0 u0s = −uT
0sx0.

Adding the term uT
0 Ax0 to both sides, we have

uT
0 (Ax0 + x0s) = (uT

0 A− uT
0s)x0.

Since [x0, x0s] and [u0,u0s] are feasible solutions to the primal and the dual,

uT
0 b = cT x0.

Thus by Theorem 5.3, both solutions are optimal solutions.

To see why we have the complementary slackness, suppose that the jth surplus variable of the
dual problem is positive. Then by Theorem 5.5, the reduced cost coefficient of the jth structural
variable of the primal problem is negative (because it is equal to the negation of the jth surplus
variable of the dual problem). Hence the jth primal structural variable should be equal to zero if it
is at the optimum. For if not, then we can set it to zero and thus increase the objective value.

Example 5.6. (Dual Prices) Let the primal be given by

max x1 + 4x2 + 3x3

subject to 2x1 + 2x2 + x3 ≤ 4
x1 + 2x2 + 2x3 ≤ 6

x1, x2, x3 ≥ 0
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Its dual is

min 4u1 + 6u2

subject to 2u1 + u2 ≥ 1
2u1 + 2u2 ≥ 4
u1 + 2u2 ≥ 3

u1, u2 ≥ 0

Initial Tableau:

x1 x2 x3 x4 x5 b

x4 2 2 1 1 0 4

x5 1 2 2 0 1 6

x0 −1 −4 −3 0 0 0

Optimal Tableau:

x1 x2 x3 x4 x5 b

x2
3
2 1 0 1 − 1

2 1

x3 −1 0 1 −1 1 2

x0 2 0 0 1 1 10

Thus the optimal primal solution is x∗ = [0, 1, 2, 0, 0] and by the duality theorem, the optimal dual
solution is u∗ = [1, 1, 2, 0, 0]. Let us check for the complementary slackness for these two dual
solutions.

u∗1 > 0 ⇒ x∗4 = 0 ⇒ 2x∗1 + 2x∗2 + x∗3 = 4 i.e. 2(0) + 2(1) + 2 = 4
y∗2 > 0 ⇒ x∗5 = 0 ⇒ x∗1 + 2x∗2 + 2x∗3 = 6 i.e. 0 + 2(1) + 2(2) = 6
x∗1 = 0 ⇒ u∗3 ≥ 0 ⇒ 2u∗1 + u∗2 ≥ 1 i.e. 2(1) + 1 = 3 ≥ 1
x∗2 > 0 ⇒ u∗4 = 0 ⇒ 2u∗1 + 2u∗2 = 4 i.e. 2(1) + 2(1) = 4
x∗3 > 0 ⇒ u∗5 = 0 ⇒ u∗1 + 2u∗2 = 3 i.e. 1 + 2(1) = 3

5.4 Dual Simplex Method
In the usual simplex method, which will be called primal method for distinction, we start with a
primal BFS x, maintain primal feasibility {xi0 ≥ 0}m

i=1 and strive for non-positivity of the reduced
cost coefficients (which is equivalent to {x0j ≥ 0}n

j=1). However, by Theorem 5.5, the entries in the
x0 row give the values of the dual variables at optimal. Thus the nonnegativity of {x0j ≥ 0}n

j=1 is
equivalent to the feasibility of the dual variables.

In the dual method, we start with a dual BFS u, maintain dual feasibility {uj0 ≥ 0}n
j=1 (which

is equivalent to {x0j ≥ 0}n
j=1) and strive for nonnegativity of {u0i ≥ 0}m

i=1 (which is equivalent to
primal feasibility {xi0 ≥ 0}m

i=1).
Since at any iteration, both the primal and the dual solutions have the same objective value,

by the duality theorem, we see that if both solutions are feasible, then we have reached optimality.
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Algorithm for the dual simplex method

1. Given a dual BFS xB , if xB ≥ 0, then the current solution is optimal; otherwise select an
index r such that the component xr of xB is negative.

2. If yrj ≥ 0 for all j = 1, 2, · · · , n, then the dual is unbounded; otherwise determine an index s
such that

−y0s

yrs
= min

j

{
−y0j

yrj

∣∣yrj < 0
}

.

3. Pivot at element yrs and return to step 1.

Example 5.7. Consider the problem:

min 3x1 + 4x2 + 5x3

subject to x1 + 2x2 + 3x3 ≥ 5
2x1 + 2x2 + x3 ≥ 6

x1, x2, x3 ≥ 0

In canonical form, it is

max − 3x1 − 4x2 − 5x3

subject to − x1 − 2x2 − 3x3 ≤ −5
− 2x1 − 2x2 − x3 ≤ −6

x1, x2, x3 ≥ 0

The initial tableau is

x1 x2 x3 x4 x5 b

x4 −1 −2 −3 1 0 −5

x5 −2∗ −2 −1 0 1 −6

x0 3 4 5 0 0 0

ratios 3
2

4
2

5
1 – –

After one iteration

x1 x2 x3 x4 x5 b

x4 0 −1∗ − 5
2 1 − 1

2 −2

x1 1 1 1
2 0 − 1

2 3

x0 0 1 7
2 0 3

2 −9

ratios – 1
1

7
5 – 3

1
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Optimal Tableau:

x1 x2 x3 x4 x5 b

x2 0 1 5
2 −1 1

2 2

x1 1 0 −2 1 −1 1

x0 0 0 1 1 1 −11

Since both the primal and the dual solutions are feasible, we have reached the optimal solution. The
primal optimal solution is given by x∗ = [1, 2, 0], the dual optimal solution is u∗ = [1, 1] and the
optimal objective value is 11 for the original problem is a minimization problem.

5.5 Post-Optimality or Sensitivity Analysis
Given an LP problem, suppose that we have found the optimal feasible solution by the simplex (or
dual simplex) method. Post-optimality or sensitivity analysis is the study of how the changes in
the original LP problem would affect the feasibility and optimality of the current optimal solution.
Before we analyze the method, we first recall the following criteria for determining the optimal
primal solutions.
Primal feasibility:

Ax = b ⇔ BxB + NxN = b. (5.7)

Primal optimality:
zT − cT = cT

BB−1A− cT ≥ 0. (5.8)

In the following we will consider changes in the original problem that can affect only one of these
criteria. For in these cases, we can obtain the new optimal solution without redoing the whole
simplex method for the new LP.

(1) Changes in resource vector b.
From (5.7) and (5.8), we see that changes in b will affect the feasibility but not the optimality of
the current optimal solution. Thus if the current optimal solution satisfies the old constraints
with the new right hand sides, then it will be the new optimal solution. By the duality theory,
the changes in b will affect the optimality but not the feasibility of the dual optimal solution.
In fact, the cost vector for the dual problem is given by b.

(2) Changes in cost/profit vector c.
By the duality theory, (or from (5.7) and (5.8) again), we see that changes in the cost vector
c will affect only the optimality of the primal optimal solution and the feasibility of the dual
optimal solution. Thus if the current optimal solution satisfies the criteria that the new x0

row is nonnegative, then it will be the optimal solution for the new LP.

(3) Changes in technology matrix A.
If the changes in A occur at the basic variables, then B will be changed. From (5.7) and
(5.8), we see that both the feasibility and the optimality of the current optimal solution may
be violated. In that case, we have to redo the whole problem. However, if the changes of A
are restricted to columns of nonbasic variables (i.e. N in (5.7)), then we see that only dual
feasibility (or equivalently primal optimality) will be affected because xN = 0.
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(4) Addition of a new primal variable/dual constraint aij + cj .
This case is essentially the same as considering simultaneously changes in the objective function
coefficient as well as the corresponding technological coefficients of nonbasic variable. (One can
assume that the aij and the cj are originally there with values equal to zero.) Consequently,
the addition of a new variable can only affect the optimality of the problem. This means that
the new variable will enter the solution if, and only if, it improves the objective function value.
Otherwise the new variable becomes just another nonbasic variable (= 0).

(5) Addition of a new primal constraint/dual variable aij + bi.
A new constraint can affect the feasibility of the current optimal solution only if it is active,
i.e. it is not redundant with respect to the current optimal solution. Consequently, the first
step would be to check whether the new constraint is satisfied by the current optimal solution.
If it is satisfied, the new constraint is redundant and the optimal solution remains unchanged.
Otherwise, the new constraint must be added to the system and the dual simplex method is
used to clear the primal infeasibility (dual optimality).

Example 5.8. Consider the LPP given by the following tableau:

x1 x2 x3 x4 x5 b

x4 1 3 4 1 0 30

x5 0 4 −1 0 1 10

x0 −2 −7 3 0 0 0

The optimal tableau is:

x1 x2 x3 x4 x5 b

x4 0 −1 5 1 −1 20

x1 1 4 −1 0 1 10

x0 0 1 1 0 2 20

(1) Changes in resource vector b.
Let the new b̂ = [10, 20]T . Then the new basic solution is given by

x̂B = B−1b̂ =
[
1 −1
0 1

] [
10
20

]
=

[−10
20

]

Thus it is no longer feasible. The new objective value is

x̂0 = cT
Bx̂B = [0, 2]

[−10
20

]
= 40.

We then need to apply the dual simplex method to restore primal feasibility with a new b
column of [−10, 20, 40]T . The new starting tableau is given by:
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x1 x2 x3 x4 x5 b

x4 0 −1∗ 5 1 −1 −10

x1 1 4 −1 0 1 20

x0 0 1 1 0 2 40

(2) Changes in cost/profit vector c.
Let the new ĉ = [3, 6,−3, 0, 0]T . The new x0 row is given by

ẑT − ĉT = ĉT
BB−1A− ĉT = [0, 6, 0, 0, 3] ≥ 0.

(Recall that B−1A is just the last tableau.) This indicates primal optimality. Thus the primal
optimal solution is unchanged. Looking at the dual, the new dual variables are

û = B−T ĉB = B−T

[
0
3

]
=

[
0
3

]
.

(3) Changes in technology coefficients aij.
In the optimal tableau, x1 and x4 are basic. Thus we can only change the entries of a2, a3

and a5. Let the new â2 = [1, 5]T . While the primal feasibility remains, we need to calculate
the new reduced cost coefficient for x2.

ẑ2 − c2 = cT
BB−1â2 − c2 = [0, 2]

[
1
5

]
− 7 = 3 ≥ 0 .

Thus the current basis remains optimal with xB = (10, 20)T and x0 = 20 unchanged. However,
if â2 = [1, 3]T , then ẑ2 − c2 = −1 ≤ 0, indicating non-optimality. In this case, we need to
replace the column under x2 in the (previously optimal) tableau by

ŷ2 = B−1â2 =
[
1 −1
0 1

] [
1
3

]
=

[−2
3

]

and pivot in the x2 column once (to have x2 become basic) to restore optimality. The new
optimal xB = [x4, x2]T = [26 2

3 , 31
3 ]T with x0 = 23 1

3 .

Example 5.9. (Adding extra constraints) Consider the following LLP problem:

x1 x2 x3 x4 b

x3 −1 −1 1 0 −1

x4 −2 −3 0 1 −2

x0 3 1 0 0 0

We note that we have primal infeasibility and dual feasibility. Using the dual simplex method, we
get the following optimal tableau.
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x1 x2 x3 x4 b

x2 1 1 −1 0 1

x4 1 0 −3 1 1

x0 2 0 1 0 −1

Since both the primal and the dual are feasible, we have reached the optimal solutions with x∗ =
[0, 1, 0, 1] and u∗ = [1, 0]. Suppose now a new constraint x1−x2 ≥ 1 is added. As x∗1−x∗2 = 0− 1 =
−1 < 1, x∗ is infeasible. Adding slack variable x5 gives x5−x1 +x2 = −1. Let us add this constraint
into the optimal tableau.

x1 x2 x3 x4 x5 b

x2 1 1 −1 0 0 1

x4 1 0 −3 1 0 1

x5 −1 1 0 0 1 −1

x0 2 0 1 0 0 −1

Notice that for the basic variable x2, its column is not a unit vector. Thus it is not a simplex
tableau. Using pivot operation, we change it back to the unit vector and we have the following
simplex tableau.

x1 x2 x3 x4 x5 b

x2 1 1 −1 0 0 1

x4 1 0 −3 1 0 1

x5 −2∗ 0 1 0 1 −2

x0 2 0 1 0 0 −1

We note that now the primal becomes infeasible again. Using dual simplex method, we finally arrive
at the new optimal tableau.

x1 x2 x3 x4 x5 b

x2 0 1 − 1
2 0 1

2 0

x4 0 0 − 5
2 1 1

2 −

x1 1 0 − 1
2 0 − 1

2 1

x0 0 0 2 0 1 −3
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Thus new x∗ = [1, 0, 0, 0, 0] and new u∗ = [0, 1].

This idea of treating additional constraints can sometimes be exploited to possibly reduce the
overall computational effort of solving an LP. Since the computational difficulty depends far more
heavily on the number of constraints than the number of variables, it may be possible first to relax
the constraints which one suspects are not binding. The new relaxed problem is then solved with a
fewer number of constraints. After the optimal solution of the new problem is obtained, the deleted
constraints are checked for feasibility in the spirit of such sensitivity analysis. It is common to refer
to these constraints as secondary constraints.


