
Chapter 6

TRANSPORTATION
PROBLEMS

6.1 Transportation Model
Transportation models deal with the determination of a minimum-cost plan for transporting a com-
modity from a number of sources to a number of destinations. To be more specific, let there be
m sources (or origins) that produce the commodity and n destinations (or sinks) that demand the
commodity. At the i-th source, i = 1, 2, · · · , m, there are si units of the commodity available. The
demand at the j-th destination, j = 1, 2, · · ·n, is denoted by dj . The cost of transporting one unit
of the commodity from the i-th source to the j-th destination is cij . Let xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n,
be the numbers of the commodity that are being transported from the i-th source to the j-th des-
tination. Our problem is to determine those xij that will minimize the overall transportation cost.
An optimal solution xij to the problem is called a transportation plan.
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We note that at the i-th source, we have the i-th source equation

n∑

j=1

xij = si, 1 ≤ i ≤ m,

while at the j-th destination, we have the j-th destination equation

m∑

i=1

xij = dj , 1 ≤ j ≤ n.

Notice that if the total demand equals the total supply, then we have the following balanced trans-
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2 Chapter 6. TRANSPORTATION PROBLEMS

portation equation:
m∑

i=1

si =
n∑

i=1

n∑

j=1

xij =
n∑

j=1

m∑

i=1

xij =
n∑

j=1

dj .

and the model is said to be balanced.
In the case of an unbalanced model, i.e. the total demand is not equal to the total supply,

we can always add dummy source or dummy destination to complement the difference. In the
following, we only consider balanced transportation models. They can be written as the following
linear programming problem:

min x0 =
m∑

i=1

n∑

j=1

cijxij

subject to





n∑

j=1

xij = si 1 ≤ i ≤ m,

m∑

i=1

xij = dj 1 ≤ j ≤ n,

xij ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n,

(6.1)

where
m∑

i=1

si =
n∑

j=1

dj .

Notice that there are mn variables but only m + n equations. To initiate the simplex method,
we have to add m+n more artificial variables and solving the problem by the simplex method seems
to be a very tedious task even for moderate values of m and n. However, the transportation models
possess some important properties that make the calculation easier to be handled.

Using the vector notations

x = [x11, x12, x13, · · · , x1n, x21, · · · , x2n, · · · , xm1, · · · , xmn]T ,

c = [c11, c12, c13, · · · , c1n, c21, · · · , c2n, · · · , cm1, · · · , cmn]T ,

b = [s1, s2, · · · , sm, d1, d2, · · · , dn]T ,

the transportation model can be stated as the following linear programming problem:

min x0 = cT x

subject to

{
Ax = b,

x ≥ 000.
(6.2)

where the technology matrix A of the model is of the form:

A =




1 1 · · · 1 0
1 1 · · · 1

. . .
1 1 · · · 1

. . .
1 1 · · · 1

1 1 1 1
1 1 1 1

. . . . . . · · · . . . · · · . . .
0 1 1 1 1




(6.3)
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Hence if we denote aij the [(i− 1)n + j]-th column of the matrix A, then

aij = ei + em+j i = 1, 2, · · · ,m, j = 1, 2, · · · , n. (6.4)

Here as usual, ei denotes the i-th unit vector. Next we are going to prove some algebraic properties
of the matrix A.

Theorem 6.1. The rank of the matrix A is equal to m + n− 1.

Proof. We first claim that rank(A) ≤ m + n − 1. Let si be the i-th row of A (source rows) and dj

be the (m + j)-th row of A (destination rows). Then it is clear from (6.3) that
m∑

i=1

si −
n∑

j=1

dj = 000.

Hence the rows si and dj are linearly dependent. Thus rank(A) < m + n.
Next we prove that rank(A) ≥ m + n − 1 by constructing a nonsingular (m + n − 1)-by-

(m+n−1) submatrix of A. Suppose we take the n-th, the 2n-th, the 3n-th, · · · , the mn-th columns
of A together with the 1-st, the the 2-nd, the 3-rd, · · · , the (n− 1)-th columns of A. This resulting
matrix is of order (m + n) by (m + n − 1). If we delete the last row of the matrix, then we obtain
the following (m + n− 1)-by-(m + n− 1) matrix:

D =




1 0 0 1 1 · · · 1
1

. . .
1

1
0 1

. . .
1




.

Since D is a triangular matrix, detD = 1. Therefore D is non-singular and rank(A) ≥ rank(D) =
m + n− 1. Thus we conclude that rank(A) = m + n− 1, which is equivalent to saying that one of
the equations in (6.1)is redundant.

Thus a basic solution to (6.1) has at most m + n− 1 nonzero entries.

Theorem 6.2. Every minor of A can only have one of the values 1, −1 or 0. More precisely, given
any Ak, a k-by-k submatrix of A, we have detAk = ±1 or 0.

Proof. Notice first that every column of A has exactly two 1’s, thus any column of Ak has either
two 1’s, only one 1 or exactly no 1. If Ak contains a column that has no 1, then clearly det Ak = 0
and we are done. Thus we may assume that every column of Ak contains at least one 1. There are
two cases to be considered. The first case is where every column of Ak contains two 1’s. Then one
of the 1’s must come from the source rows and the other one must come from the destination rows.
Hence subtracting the sum of all source rows from the sum of all destination rows in Ak will give us
the zero vector. Thus the row vectors of Ak are linearly dependent. Hence detAk = 0. It remains
to consider the case where at least one column of Ak contains exactly one 1. By expanding Ak with
respect to this column, we have

detAk = ± detAk−1

where the sign depends on the indices of that particular 1. Now the theorem is proved by repeating
the argument to Ak−1.

Definition 6.1. A matrix A is said to be totally unimodular if every minor of A is either 1, −1 or
0.

Thus the coefficient matrix of a transportation problem is totally unimodular.
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6.2 The Simplex Method and Transportation Problems
Let us first prove that transportation models always have optimal solution. In fact, given problem
(6.1), if we put

xij =
sidj

α
, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

where

α =
m∑

i=1

si =
n∑

j=1

dj ,

then it is easy to check that it is a solution to Ax = b. Hence transportation problems always have a
feasible solution. Since all xij and cij are nonnegative, x0 ≥ 0. In particular, the objective function is
bounded from below. Hence it follows that a transportation problem must have an optimal solution.

Let us see what happens if (6.1) is solved by simplex method. Since rankA = m + n − 1, a
basic optimal solution to (6.1) have only m + n− 1 basic variables, i.e. no more than m + n− 1 of
the xij in the solution are different from zero. To solve (6.1) by simplex method, we first change it
into standard form by adding m + n artificial variables to (6.2). Then we have

min x0 = cT x + M111T xa

subject to





[ A, I ]
[

x
xa

]
= b,

x,xa ≥ 0.

(6.5)

Here xa is the artificial variable. Since basic feasible solution exists, the artificial variables for the
problem can always be driven to zero in phase I (or else the problem has no optimal solution, a
contradiction). Since (6.2) and (6.5) have the same optimal solution, basic optimal solution to (6.5)
can have no more than m+n− 1 non-zero variables, i.e. a basic optimal solution to (6.5) must have
at least one artificial variable in the basis at zero level. (Recall that artificial variables at zero level
in Phase II indicate redundancy).

Suppose that we have found by some means a basic feasible solution to (6.5) which is also a
feasible solution to (6.2), (i.e. we are in phase II). Let B be the basic matrix (of order m + n) of
[A, I], then B contains m + n − 1 columns of A and one artificial vector q with the corresponding
artificial variable at zero level. Therefore we may consider the m+n−1 linearly independent column
vectors of A in B as a set of basis vectors for (6.2). The collection of these m + n − 1 vectors will
be denoted by aB

αβ and the corresponding basic variables will be denoted by xB
αβ . More precisely, if

B = [aB
αβ ,q] is basic matrix for (6.5), we then define B = [aB

αβ ] as a basic matrix for (6.2).
We observe that any column vector aij of A is just a linear combination of vectors of B, i.e.

aij =
∑

αβ

y(αβ)(ij)aB
αβ (6.6)

where
∑
αβ

means summation over all vectors in the basis. We recall that (6.6) is just the change of

basis equation (2.24):
aij = Byij , (6.7)

where B is (m + n)-by-(m + n− 1) and contains the columns aB
αβ . Thus in the language of simplex

method, y(αβ)(ij) are just the entries in the simplex tableau at the current iteration. Now we prove
the two most important properties of transportation models.

Theorem 6.3. The coefficients y(αβ)(ij) can only take the values 1,−1 or 0.
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Proof. Let Ri be the (m + n − 1)-by-(m + n − 1) matrix obtained from B in (6.7) by deleting the
ith row of B. By (6.7), Riyij is the same as aij with the ith entry removed. Hence by (6.4), we see
that

Riyij = em−1+j .

Thus
yij = R−1

i em+1−j =
1

det Ri
(adj Ri)em−1+j ,

where adj Ri is the adjoint of Ri. Note that Ri is obtained by taking (m + n − 1) columns and
(m + n − 1) rows of A, hence is a submatrix of A. This also follows from the fact that Ri is a
submatrix of B and B is a submatrix of A. Since B is a basic matrix, Ri has full rank. Thus, by
Theorem 6.2, we have det Ri = ±1. Since the entries of adj Ri are just minors of Ri and hence of
A, their values can only be ±1 or 0. Thus we see that yij = ±1 or 0.

Thus (6.6) becomes
aij =

∑

αβ

(±1)aB
αβ ,

where we have omitted those aB
αβ with y(αβ)(ij) = 0 in the summation. We note that the conclusion

of Theorem 6.3 holds for any linear programming problem where its coefficient matrix is totally
unimodular.

Theorem 6.4 (The Stepping Stones Theorem). Let B = {aαβ} be a set of (m+n−1) linearly
independent columns of A. Then for all column vector aij of A, 1 ≤ i ≤ m, 1 ≤ j ≤ n, we have

aij = aii1 − ai2i1 + ai2i3 − ai4i3 + · · ·+ (−1)kaikj , (6.8)

where aii1 ,ail,il+1 ,aikj are in B for l = 1, · · · , k − 1. Moreover, the expression (6.8) is unique.

Proof. Since rank A = m + n− 1, all column vectors of A can be written as a linearly combinations
of vectors in B. Moreover by Theorem 6.3, we have

aij =
∑

αβ

(±1)aαβ =
∑

αβ∈I+

aαβ −
∑

γδ∈I−
aγδ,

where I± are index sets depending on the aij . By (6.4), this becomes

ei + em+j =
∑

αβ∈I+

eα +
∑

αβ∈I+

em+β −
∑

γδ∈I−
eγ −

∑

γδ∈I−
em+δ.

From this expression, it is clear that there exists an 1 ≤ i1 ≤ n such that (ii1) ∈ I+. Subtracting
aii1 from both sides, we get

em+j − em+i1 =
∑

αβ∈I+
1

eα +
∑

αβ∈I+
1

em+β −
∑

γδ∈I−
eγ −

∑

γδ∈I−
em+δ,

where I+
1 = I+ \ {(ii1)}. Now if i1 = j, we are done. If not, then from the expression, it is clear

that there exists an 1 ≤ i2 ≤ m such that (i2i1) ∈ I−. Subtracting ai2i1 = ei − em+i1 from both
sides, we get

em+j + ei2 =
∑

αβ∈I+
1

eα +
∑

αβ∈I+
1

em+β −
∑

γδ∈I−2

eγ −
∑

γδ∈I−2

em+δ,

where I−2 = I− \ {(i2i1)}. Equation (6.8) now follows by repeating the arguments again until I−l is
empty. Since B is a basis, it is clear that (6.8) is unique.
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In the following, we consider how to iterate from one simplex tableau to the next.

Update of the solution x.
Let ast be the entering vector and aB

uv be the leaving vector. Then the solution xij are updated
according to 




x̂B
αβ = xB

αβ − xB
uv

y(αβ)(st)

y(uv)(st)
if (αβ) 6= (uv)

x̂uv =
xB

uv

y(uv)(st)

(6.9)

This equation is to be compared with the updating rule in simplex method:




x̂Bi
= xBi

− xBr

yij

yrj
if i 6= r

x̂Br
=

xBr

yrj

But by Theorem 6.3, the pivot element y(uv)(st) will always be equal to 1 and that the other y(αβ)(st) =
±1 or 0. Therefore, we see that (6.9) can be rewritten as

{
x̂B

αβ = xB
αβ or x̂B

αβ = xB
αβ ± xB

uv

x̂B
uv = xB

uv

(6.10)

The property (6.10) is usually referred to as integer property . It shows that if the starting basic
feasible solution x is an integral vector (i.e. all entries are integer), then at each subsequent iteration,
the solution x is also an integral vector. In particular, the optimal solution x∗ is also an integral
vector.

We remark that the integer property of transportation problems is derived from the fact that
all entries of yij can either be 1, −1 or 0. Thus by recalling Theorem 6.3, we see that if the coefficient
matrix of a linear programming problem is totally unimodular, then the problem will have the integer
property.

Update of tableau entries yij.
For usual simplex method, the tableau entries yj are updated by the elementary row operations:





ŷBi = yBi −
yij

yrj
if i 6= r

ŷBr =
yBr

yrj

In our notations, we then have




ŷ(αβ)(ij) = y(αβ)(ij) −
y(uv)(ij)

y(uv)(st)
if (αβ) 6= (uv)

ŷ(uv)(ij) =
y(uv)(ij)

y(uv)(st)

Since the pivot element y(uv)(st) is always equal to 1, we have
{

y(αβ)(ij) = y(αβ)(ij) − y(uv)(ij) if (αβ) 6= (uv)
y(uv)(ij) = y(αβ)(ij)

Computation of zij − cij.
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Recall that in the simplex method,

zj − cj = cT
Bi

yj − cj =
∑

xi∈B

cBi
yij − cj .

Hence in our notations, we have

zij − cij =
∑

x(αβ)∈B

y(αβ)(ij)c
B
αβ − cij . (6.11)

Because of the simple algebraic structure of the transportation models, it is not necessary to
use the simplex tableau, which is of size (m + n + 1) by (mn + n + n + 1), to hold all necessary
information. In the following, we will construct a different tableau, called the transportation tableau,
that can hold the same pieces of information and yet is easy to be handled. For the transportation
model in (6.1), its transportation tableau consists of m by n boxes and is of the form

Supply

c11 c12 · · · · · · c1n
s1

x11 x12 · · · · · · x1n

c21 c22 · · · · · · c2n ...
x21 x22 · · · · · · x2n

...
... cij

...
...

si...
... xij

...
...

...
...

...
...

... ......
...

...
...

...

cm1 cm2 · · · · · · cmn
sm

xm1 xm2 · · · · · · xmn

Demand d1 · · · dj · · · dn

In the transportation tableau, nonbasic variables (i.e. those aij not in the basis) are not written out
explicitly.

Recall that simplex tableau contains the following information:

(i) The current solution in the b column.

(ii) The x0 row contains the reduced cost coefficients zj − cj .

(iii) The transformed columns of A, denoted as usual by yj . They are related to the columns aj

of A by (2.20): yj = B−1aj .

(iv) The current basic variables.
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We will see that the transportation tableau can be manipulated easily to give us these necessary
pieces of information. For one thing, according to our convention on the transportation tableau,
those variables that are not listed in the tableau are nonbasic. Those variables that are listed are
basic and their values are the values of the current basic feasible solution. Next we show by an
example how to compute the current coefficient matrix y(αβ)(ij) and the corresponding reduced cost
coefficient zij − cij .

Example 6.1. Let us consider a problem with eight variables xij , 1 ≤ i ≤ 2, 1 ≤ j ≤ 4. We then
have the following 2-by-4 transportation tableau.

x11 x12

x22 x23 x24

Since rank A = 2 + 4− 1 = 5, there will be five basic variables in any basic feasible solutions of the
problem. According to our convention, x11, x12, x22, x23 and x24 are the current basic variable. Thus
a11,a12,a22,a23 and a24 are the basis vectors. The other three vectors are just linearly combinations
of these five vectors. For example,

a21 = a22 − a12 + a11.

Thus y(22)(21) = y(11)(21) = 1 and y(12)(21) = −1. Therefore, according to (6.11),

z21 − c21 = c22 − c12 + c11 − c21.

Similarly, we have
a13 = a12 − a22 + a23,

i.e. y(12)(13) = y(23)(13) = 1 and y(22)(13) = −1. Therefore,

z13 − c13 = c12 − c22 + c23 − c13.

Finally,
a14 = a12 − a22 + a24

and hence y(12)(14) = y(24)(14) = 1 and y(22)(14) = −1. Thus we have

z14 − c14 = c12 − c22 + c24 − c14.

We remark that a loop is formed each time. For example, for x14, we have the following loop.

x11 x12

x22 x23 x24

The loop starts with a nonbasic variable, passes through a sequence of basic variables (stepping
stones) and finally returns to the starting nonbasic variable. This is a consequence of Theorem 6.4.
We note moreover that for each of these nonbasic variable, there exists one and only one such loop.
In fact, by Theorem 6.4, if there are two such loops, then the nonbasic vector can be expressed in
terms of two different linear combinations of vectors in the basis. This will be a contradiction to the
linear independence of the basic vectors.
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6.3 The Starting Basic Feasible Solution
In this section, we are concerned with the problem of finding a starting basic feasible solution to
the transportation problem. There are many methods for finding such a starting BFS. The easier
ones are the northwest-corner method , the column minima method and the row-minima method . In
the following, we introduce the matrix minima method (or least cost method) that will give a better
starting BFS in the sense that the starting value of the objective function is usually smaller.

At each step of the method, we select, among all uncrossed-out xij , the xij with smallest unit
cost, and assign as large as possible to xij . Then we cross out the satisfied row or column. (That
means xij so added must either satisfy a row equation or a column equation). If both the row and
the column are satisfied simultaneously, we only cross out one. Then we adjust the supply and
demand for all uncrossed-out rows and columns and repeat the whole process. The starting basic
feasible solution is obtained when exactly one row or one column is left uncrossed out.
Example 6.2. Consider the following transportation tableau.

10 0 20 11
15

12 7 9 10
25

0 14 16 18
5

5 15 15 10

It has 3 source and 4 destinations. Thus the number of basic variables is 3 + 4− 1 = 6. To find the
starting basic feasible solution, we begin by searching the smallest cost in the tableau. We note that
both c12 and c31 are zero. We break the tie arbitrary and choose c31. Hence we set x31 = 5. In that
case, both row 3 and column 1 are satisfied. We readjust the row sum and column sum accordingly.
Though both row sum and column sum are zero, we can only cross out one of them. In the example,
we cross out only the first column. The next four tableaus show the steps in obtaining the starting
BFS.

1

10 0 20 11
15

12 7 9 10
25

0 14 16 18
0

5

0 15 15 10

1 2

10 0 20 11
0

15

12 7 9 10
25

0 14 16 18
0

5

0 0 15 10



10 Chapter 6. TRANSPORTATION PROBLEMS

1 2 3

10 0 20 11
0

15

12 7 9 10
10

15

0 14 16 18
0

5

0 0 0 10

1 2 3 4

10 0 20 11
0

15

12 7 9 10
0

15 10

0 14 16 18
0

5

0 0 0 0

Thus the starting basic feasible solution is given by

x14 = x34 = 0, x31 = 5, x24 = 10, x12 = x23 = 15,

and the starting basis vectors are a14,a34,a31,a24,a12 and a23. The starting value of the objective
function is

x0 = 15× 9 + 10× 10 = 235.

Example 6.3. For the following problem, the starting BFS is given by the boxed variables in the
following tableau.

6 1 5 3

2 1 3 3 2 5

4 0 50 50
3 12 9 4 3 4

7 30 10 40
3 5 4 2 4 1

20 9 20 11 60
4 2 2 1 2 2

2 31 31

30 50 20 40 30 11

6.4 Iteration on the Transportation Tableau
Having found the starting BFS, we will need to determine the entering and leaving variables for the
next iteration.

The Entering Variable.

Recall that the entering variable is determined by the reduced cost coefficients. Since we are
doing a minimization problem, the optimality condition is that

zij − cij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The entering variable is chosen to be the variable with positive zij − cij . Usually, we choose the
first xij which has positive zij − cij to be our entering variable or we can also choose the xij with
the largest positive zij − cij . If all zij − cij are non-positive, then we have reached the optimal
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solution. Recall that zij − cij is always zero for basic variables. Notice that by (6.11) and Theorem
6.4, zij − cij is of the form

zij − cij = cii1 − ci2i1 + ci2i3 − · · ·+ cikj − cij

where xii1 , xi2i1 , xi2i3 , · · · , xikj is a closed loop of basic variables that starts and ends at xij . Thus
the reduced cost can be computed as follows:

(i) Find for each nonbasic variable xij , a closed loop that starts and ends at the nonbasic variable,
yet each corner of the loop is a basic variable.

(ii) Then zij is computed by adding and subtracting in sequence the unit cost of each of the basic
variable in the loop.

(iii) Finally, we compute zij − cij and write it in the lower left hand corner of the box that belongs
to xij .

Notice that once we have found an zij − cij that is positive, we can choose the corresponding
xij as the entering variable. If we want the leaving variable to be the one with the most
positive zij − cij , then at each iteration, we have to compute all zij − cij .

Example 6.4. Consider the following transportation problem.

10 20 5 7

10

13 9 12 8

20

4 15 7 9

30

14 7 1 0

10 20 10

3 12 5 19

20 30

We have

z12 − c12 = c11 − c51 + c52 − c12

= 10− 3 + 12− 20 = −1
z13 − c13 = c11 − c51 + c52 − c42 + c43 − c13

= 10− 3 + 12− 7 + 1− 5 = 8.

All other reduced cost coefficients are evaluated similarly. In the following transportation tableau,
we list all these reduced cost coefficients in the lower left hand corner of their respective boxes.
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10 20 5 7

10

0 −1 8 5

13 9 12 8

20

−13 −9 −6

4 15 7 9

30

−2 0 −3

14 7 1 0

10 20 10

−10

3 12 5 9

20 30

1 −14

We see that the entering variable is x13 with z13 − c13 = 8.

The Leaving Variable.

Next we consider the leaving variable which is determined by the feasibility condition. Recall
that the yij are either 1, −1 or 0. The leaving variable is thus the variable with positive yij and
minimum xij .

Example 6.5. Continuing with Example 4, since the entering vector a13 is given by

a13 = a11 − a51 + a52 − a42 + a43,

it follows that y11 = 1, y52 = y43 = 1 and y51 = y42 = −1. Hence we only have to consider x11, x52

and x43. Since x11 is the minimum, x11 is the leaving variable.

The Iteration.

Now we have to update the solution x. This can be done by using the integer property (6.10).
However, there is an easy way. We note that x11 has to be set to zero in the next iteration and x13

is going to be nonzero, yet we have to satisfy the constraints. How do we accomplish this? When
x11 is reduced by δ to 10 − δ, then we can set x51 to 20 + δ to make up the difference in the first
column. But then x52 has to be 30 − δ to satisfy the constraint for the fifth row. Using this idea
recursively, we get
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10 20 5 7

10− δ δ

13 9 12 8

20

4 15 7 9

30

14 7 1 0

10 + δ 20− δ 10

3 12 5 19

20 + δ 30− δ

Finally we see that x13 = δ. Since x11 = 0 in the next iteration, δ = 10, and we obtain the
following tableau.

10 20 5 7

10

13 9 12 8

20

4 15 7 9

30

14 7 1 0

20 10 10

3 12 5 19

30 20

Using the same optimality and feasibility criteria, we see that in the next iteration, the entering
variable is x53 and the leaving variable is x43. By setting x̂53 = x43, x̂43 = 0 and adjusting the
values of the other basic variables in the loop, we have the following tableau.
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10 20 5 7

10

13 9 12 8

20

4 15 7 9

30

14 7 1 0

30 10

3 12 5 19

30 10 10

Computing all the reduced cost coefficients for the tableau, we find that we have reached the optimal
solution with optimal cost

x0 = 5 · 10 + 9 · 20 + 4 · 30 + 7 · 30 + 5 · 10 + 12 · 10 + 3 · 30 = 820.

6.5 Method of Multipliers
This is another method for evaluating zij − cij . The idea is to use the dual variables. It can be
checked that the dual of (6.1)is given by:

max
m∑

i=1

siui +
n∑

j=1

djvj

subject to

{
ui + vj ≤ cij 1 ≤ i ≤ m, 1 ≤ j ≤ n

ui, vj free
(6.12)

In the method of multipliers, we write, for each basic variable xB
ij ,

cij = ui + vj . (6.13)

This follows from the Theorem of complementary slackness, namely if the primal structural variable
is positive, then the dual slack variable must be zero. Since

zij − cij =
(
cii1 − ci2i1 + · · ·+ cikj

)− cij

= ui + vi1 − (ui2 + vi1) + · · ·+ (uik
+ vj)− cij

= ui + vj − cij ,

we have
zij − cij = ui + vj − cij . (6.14)

Since there are (m + n − 1) basic variables, there are (m + n − 1) equations in (6.13). However,
there are m + n unknown variables ui and vj in (6.13). Thus we can arbitrarily assign any one of
the ui or vj a value and evaluate all the other unknowns accordingly. Once all ui and vj have been
determined, zij − cij can be evaluated by (6.14).
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Example 6.6. Consider the transportation tableau in Example 6.4 again. We have




u1 + v1 = 10
u2 + v2 = 9
u3 + v1 = 4
u4 + v2 = 7
u4 + v3 = 1
u4 + v4 = 0
u5 + v1 = 3
u5 + v2 = 12

By assigning u1 = 0, we have

u1 = 0, u2 = −10, u3 = −6, u4 = −12, u5 = −7

and
v1 = 10, v2 = 19, v3 = 13, v4 = 12.

We can write them in the transportation tableau as follows:

vj

ui
10 19 13 12

10 20 5 7

0 10

13 9 12 8

−10 20

4 15 7 9

−6 30

14 7 1 0

−12 10 20 10

3 12 5 19

−7 20 30

Using (6.14), we can get zij − cij for all i and j easily. For example,

z21 − c21 = u2 + v1 − c21 = −10 + 10− c21 = −c21 = −13 .

Before we end this section, let us note that at the optimal tableau, the ui and vj so solved by
(6.13) will gives the optimal values of the dual variables for the dual problem (6.12). In fact, by
Theorem 5.5, we see that at optimal, the dual vector

u = [u1, u2, · · · , um, v1, v2, · · · , vn]
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is given by

cT
B = uT B, (6.15)

where B is made up of (m + n − 1) columns of A. By recalling the special structure of A in (6.3),
we see that (6.15) is equivalent to (6.13). In fact, if aB

ij is a vector in the basis (i.e. in B), then by
(6.4) and (6.15), we have

cB
ij = uT aB

ij = uT (ei + em+j) = ui + vj .

6.6 Transshipment Model
The standard transportation model assumes that the direct route between a source and a destination
is a minimum-cost route. However, in actual application, the minimum-cost route is not known a
priori. In fact, the minimum-cost route from one source to another destination may well pass through
another source first. The transportation techniques we developed in the previous sections can be
adapted to find the minimum-cost route systematically.

The idea is to formulate the problem of finding the minimum-cost route as a transshipment
model and then solve the transshipment model by transportation techniques. In transshipment
model, commodities are allowed to pass transiently through other sources and destinations before
it ultimately reaches its designated destination. It therefore is capable of seeking the minimum-cost
route between a source and a destination.

To put the transshipment model in the context of transportation problem, we note that in
transshipment model, the entire supply from all sources could potentially pass through any source
or destination before it is redistributed again. This means that each source or destination node in
the transportation network can be considered both as a transient source and a transient destination.
Thus the number of sources equals to the number of destinations in the transshipment models and
that number is equal to the sum of sources and destinations in the corresponding transportation
models.

To allow transient passing of the commodity, an additional buffer stock B has to be allowed at
each source and destination. Since potentially, the entire supply from all sources could pass through
any one of the node, the size of the buffer stock has to be at least equals to the sum of supply or
demand of the transportation model, i.e.

B ≥
m∑

i=1

ai =
n∑

j=1

bj .

This amount of buffer stock has to be added to each source and destination nodes in the transporta-
tion network.

Before one can use the transportation technique to solve the transshipment model, one has to
determine the unit cost of shipping the commodities through the transient nodes. In general, the
shipping cost from one location to itself should be zero and the shipping cost from the source Si to
the destination Dj should be the same as the shipping cost from Dj to Si, but that may change
depending on the problem. However, one should note that the unit shipping cost from a source to
another source or from a destination to another destination is in general not given in the original
transportation problem. Thus these figures have to be given before the transshipment models is
completed.
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Example 6.7. Consider the following transportation problem.

D1 D2

5 7

S1 50

12 8

S2 40

7 9

S3 60

70 80

To formulate the problem as a transshipment problem, we assume that the commodities can pass
through any one of the nodes in the network before they finally reach their destinations. We suppose
further that the cost is the same for shipments in opposite directions and unit cost of shipment
amongst the sources is 10 while amongst destinations is 5. The transshipment problem is thus
changed into the following transportation problem.

S1 S2 S3 D1 D2

0 10 10 5 7

S1 200

10 0 10 12 8

S2 190

10 10 0 7 9

S3 210

5 12 7 0 5

D1 150

7 8 9 5 0

D2 150

150 150 150 220 230

Sometimes in a transportation problem, the commodities have to be shipped to an relocation
centers before they are shipped to their final destinations. In that case, only the relocation centers
can act as both a destination and a source. Clearly, the size of the buffer stock at these relocation
centers should be the same as the total supply of the transportation problem. Notice that if the
commodities are not allowed to be shipped from source Si to destination Dj directly, then the unit
cost for such a shipment should be set to an arbitrarily large number, i.e. cij = M À 1.
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Example 6.8. Consider the following transportation network.

Source Relocation
Centers Destinations

100 // 1

++VVVVVVVVVVVVVVVVV

""EEEEEEEEEEEEEEEEEEEEE 6 // 80

4

33gggggggggggggggggggg //

++XXXXXXXXXXXXXXXXXXXX

((PPPPPPPPPPPPPPPPPPPPP

$$IIIIIIIIIIIIIIIIIIIIIII 7 // 50

150 // 2

33hhhhhhhhhhhhhhhhh

++VVVVVVVVVVVVVVVVV 8 // 75

5

++XXXXXXXXXXXXXXXXXXX //

33gggggggggggggggggggg

66nnnnnnnnnnnnnnnnnnnnn

::uuuuuuuuuuuuuuuuuuuuuuu
9 // 100

120 // 3

33hhhhhhhhhhhhhhhhh

<<yyyyyyyyyyyyyyyyyyyyy
10 // 65

The buffer size at the relocation centers should be set to 370. The corresponding transportation
tableau is given as follows:

4 5 6 7 8 9 10

M M M M M

1 100

M M M M M

2 150

M M M M M

3 120

0

4 370

0

5 370

370 370 80 50 75 100 65

6.7 Assignment Problems
Consider assigning n jobs to n machines such that one job is assigned to one machine and one
machine gets only one job. Thus the total number of possible assignments is n!. A cost cij is
associated with assigning job i to machine j, i = 1, 2, · · · , n; j = 1, 2, · · · , n. The least total cost
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assignment is then a (zero-one) linear program as follows:

max x0 =
n∑

i=1

n∑

j=1

cijxij

subject to





n∑

j=1

xij = 1 (i = 1, 2, · · · , n) (one job sets one machines)

n∑

i=1

xij = 1 (j = 1, 2, · · · , n) (one machine gets one job)

xij = 0, 1 (1 = 1, 2, · · · , n; j = 1, 2, · · · , n)

Notice that both the transportation problem and the assignment problem have totally unimod-
ualr coefficient matrices, i.e. the determinants of all their square submatrices are equal to 0, +1 or
−1. This implies that both problems have the integer value property and hence all BFS solutions,
in particular, the optimal solutions, are integer-valued even if the integral constraints are discarded,
provided that all si and dj are integers in the case of transportation problems.

Standard LP methods and the transportation techniques are applicable for assignment prob-
lems with xij = 0, 1 replaced by 0 ≤ xij ≤ 1. However, there is a much more efficient direct method
generally known as the assignment algorithm. The key observation of the assignment algorithm is
that without loss of generality, we may assume that the cost cij ≥ 0 for all i, j.

Theorem 6.5. Let C be the cost matrix with entries cij, 1 ≤ i ≤ m and 1 ≤ j ≤ n. If a constant
is added to or subtracted from any row or column of C, giving C ′; the minimization of the modified
objective function x0

′ =
∑
i,j

cij
′xij yields the same solution xij as the original objective function

x0 =
∑
i,j

cijxij.

Proof. Suppose pi is added to row i and qj is subtracted from column j. Then

x0
′ =

∑

i,j

cij
′xij =

∑

i,j

(cij ± pi ± qj)xij

=
∑

i,j

cijxij ±
∑

i

pi

∑

j

xij ±
∑

j

qj

∑

i

xij

=
∑

i,j

cijxij ±
(∑

i

pi ±
∑

j

qi

)

= x0 + constant

We use this idea to create a new coefficient matrix C ′ with at least one zero element in each
row and in each column, and if using zero elements only (or a subset of which) yields a feasible
assignment (with total cost = 0, of course), then this assignment is optimal because the total cost
of any feasible assignment is nonnegative, since c′ij ≥ 0 for all ij.

To determine if the zero elements alone can yield a feasible assignment solution, we first cover
the cost matrix C ′ by lines. Define cover c to be the minimum number of lines that can cover all
zero elements. Then c ≤ n. If c = n, then we have an assignment on only the zero elements. The
actual assignment of jobs to machines is obtained by a trace-back as follows:

Let
zij ≡ number of zeros in row i + column j,

where the (i, j)th entry is zero. Make successive assignments in increasing zij order. Delete row i
and column j upon assignment i-j is made.
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Example 6.9. Consider the following assignment problem.
Tableau 1. Subtract pi from row i.

∑
i pi = 28.

5 7 9 p1 = 5

14 10 12 p2 = 10

15 13 16 p3 = 13

Tableau 2. Subtract qj from column j.
∑

j qj = 2.

0 2 4

4 0 2

2 0 3

q1 = 0 q2 = 0 q3 = 2

Then we have the following tableau with its cover.

L

L 0∗ 2 2

L 4 0 0∗

2 0∗ 1

Now the number of zero cells is 4 and the cover c = n = 3. Using the trace-back algorithm,
we have the optimal assignment of x∗11 = x∗23 = x∗32 = 1, and x∗ij = 0 for all other i, j with
x∗0 =

∑
i pi +

∑
j qj = 30.

Basically the assignment algorithm approach is a dual method because at any time, pi and qj

together yield a feasible solution to the dual of assignment problems. This is because c′ij ≥ 0 implies
that cij − pi − qj ≥ 0 or pi + qj ≤ cij .

When the cover c < n, we can improve the algorithm as follows: Let

h ≡ Min
{(i,j)|cij−(pi+qj)>0}

[cij − (pi + qj)] > 0.

Set {
pi ← pi − h if i is a covered row
pi unchanged if not

Set {
qj ← qj + h if j is not a covered column
qj unchanged if covered
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Graphically, we have

covered uncovered

covered +h 0

uncovered 0 −h

Observe that since all zeros are previously covered, all entries after this change remain nonnegative.
This algorithm creates at least one more zero entry, which is previously uncovered and positive;
while possibly increasing some previously zero entries that are covered by 2 lines. To apply this
algorithm, select the smallest uncovered element, subtract that from every uncovered element and
add that to every element covered by two lines.

Example 6.10. Subtracting constants from rows and columns of the assignment tableau gives:

1 4 6 2 1

8 7 10 9 7

4 5 11 7 4

6 7 8 5 5
∑

= 17

0 3 5 2

1 0 3 2

0 1 7 3

1 2 3 0

0 0 3 0 | ∑ = 3

L

0 3 2 2

L 1 0 0 2

0 1 4 3

L 1 2 0 0(∑
pi +

∑
qj = 20

)

Note that the cover c = 3 < 4 = n. The smallest uncovered element is c′32 = 1. Subtracting that
from every uncovered element and adding that to every element covered by two lines gives:

L

0 3 2 2

L 1 0 0 2

0 1 4 3 −h

L 1 2 0 0 −h

+h +h +h

h=1−→

0 2 1 1

2 0 0 2

0 0 3 2

2 2 0 0

Now the cover c = 4 = n. Assignment in increasing order of number of zeros in row and column
gives:

x11
∗ = x23

∗ = x32
∗ = x44

∗ = 1,

and all other xij
∗ = 0. The minimal cost is given by

x0
∗ = 20 + [3(1)− 2(1)] = 21

or alternatively,
x0
∗ = c11 + c23 + c32 + c44 = 1 + 10 + 5 + 5 = 21.


